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EXECUTIVE SUMMARY 
The overarching objective of this research is to develop a framework that can rate and identify 
areas of high probability of failure of highway embankment slopes. The research project consisted 
of five tasks to address the aforementioned objective. The first task involved systematically 
reviewing literature on the effects of long-term cyclic wetting-drying phases on hydro-mechanical 
properties of clayey soils and comprehending the current state of practice to evaluate the impact 
of such weathering cycles. The second task involved conducting laboratory model-scale 
experiments of Louisiana and Texas soils and relate the laboratory test results to weathering cycles 
by accounting for parameters such as rainfall intensity and duration, evapotranspiration, 
temperature, and relative humidity. The physical models of the embankments were constructed in 
the laboratory-controlled environment using the bulk soil samples that were collected from failed 
embankment sites and were instrumented with soil moisture and temperature sensors. The 
embankments were exposed to different environmental conditions by using an artificial 
precipitation system consisting of a grid of perforated PVC piping coupled with an automatic 
irrigation system. The embedded sensors provided a measure of fluctuations in moisture content 
and temperature when the embankment models were exposed to fluctuating environmental 
conditions. The third task involved conducting laboratory testing to determine the strength and 
unsaturated soil properties of samples collected from laboratory model-scale experiments and to 
investigate the subsequent changes in the hydro-mechanical properties of those clayey soils. 
Moreover, newly compacted cylindrical soil specimens were also exposed to wetting and drying 
cycles prior to testing the hydro-mechanical properties. The properties of unsaturated soils were 
used to predict soil suction levels of failed embankment slope. Soil Water Retention Curve 
(SWRC) was used to determine the depth of the moisture fluctuation, which in turn facilitated 
identification of the zone where the shear strength of clay deteriorated due to the cycles of wetting 
and drying. Linear and volumetric shrinkage tests were conducted to study the shrinkage 
characteristics of soil specimens due to loss of moisture. Furthermore, the shrinkage test results 
provided a measure of the propensity and extent of strength loss incurred by a soil specimen when 
exposed to weathering cycles. The fourth task involved performing numerical modeling of 
highway embankments with material properties and test results obtained from Task 3, to 
investigate the effects of change in hydro-mechanical properties of the soil on the stability of the 
slopes. The fifth task involved developing a framework that can be used to predict the locations 
that have a high risk of slope failure in Region 6 and assess the reliability of the proposed model 
with field verification from documented slope failures. The changes in soil strength and hydraulic 
conductivity are functions of probability of highway embankment failure, and hence the outcomes 
of the third and fourth task were used to develop a framework for predicting high-risk zones. 

The results and findings of the research suggest that the shear strength of Texas and Louisiana 
soils starts at peak strength and undergo significant strength loss when exposed to wet-dry 
weathering cycles over time to attain the Fully Softened Strength (FSS). Moreover, the saturated 
hydraulic conductivity increases by 2 to 4 orders of magnitude (i.e., 102 to 104 times) due to the 
wetting and drying cycles. The reduction in soil strength from peak to FSS and an increase in 
hydraulic conductivity values provide valuable insight into the development of failure conditions 
in the embankment with time.
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1. INTRODUCTION 
The resilience of transportation infrastructure, particularly the highway embankment, is extremely 
crucial for the economic growth of the region and daily commuting services. In the United States, 
especially in Region 6, the highway embankments were mostly constructed using medium to high 
plasticity clayey soil. These clayey soils undergo significant volumetric changes due to seasonal 
climatic changes (1–7). In long drought periods, clayey soil tends to shrink whereas, in rainy period 
it swells significantly (8–11). Hence, these clayey soils experience a significant change in the 
hydro-mechanical properties over time. As a result, each year several highway embankment slope 
failures occur that results in constrained mobility services and high maintenance costs (8).  

Each repeated weathering (wetting-drying) cycle produces desiccation cracks in the clayey soil 
that drastically change the soil’s hydro-mechanical properties (12–19). The presence of desiccation 
cracks in a clayey embankment results in exposure of near-surface layers to moisture intrusion 
during precipitation. Moreover, the increase in soil hydraulic conductivity leads to rapid wetting 
of clayey soil during rainfall events. Since the moisture content of the cracked clayey soil increases 
easily, the clayey soil swells, and as a result the shear strength of soil reduces to FSS This 
phenomenon causes numerous, shallow slope failures (4 to 8 ft) that are oriented approximately 
parallel to the surface of the (17, 20–23). Although, it is well known that the detrimental change 
in the hydro-mechanical properties of the soil cause these failures, knowledge of the time-
dependent change in hydro-mechanical properties is still lacking. Such changes in hydro-
mechanical properties are influenced by several factors, including climate, extreme weather 
events, vegetation-soil-water interaction, evapotranspiration, erosion, formation and deepening of 
cracks from desiccation, and soil clay size-fraction and mineralogy. Therefore, there is a need to 
understand the effects of wetting and drying cycles on the hydro-mechanical properties of soils. 
The aim of this research is to develop a methodology and formulate a predictive tool to identify 
high-risk slopes. The objective was achieved by identifying the soil parameters and environmental 
factors that affect the performance of newly compacted clayey fill embankments. Laboratory-scale 
physical models of embankments were exposed to fluctuating environmental conditions prior to 
testing of hydro-mechanical properties of the soil and numerical modeling was used for calibration 
and validation.
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2. OBJECTIVES 
The main objective of this study is to develop a framework that can predict the locations which 
have a high risk of slope failure and demonstrate its applicability in Region 6. To accomplish the 
proposed objective, the following tasks were conducted: 

Task 1 involved a systematic review of literature pertaining to testing of hydro-mechanical 
properties with variations in environmental conditions. Reviewing prior long-term cyclic 
weathering experimental studies that investigated changes in hydro-mechanical properties of high 
plasticity soils provided valuable insight into the state-of-practice for state Department of 
Transportation (DOT) engineers and practitioners.  

Task 2 consisted of performing experiments on embankment materials built in the laboratory with 
soils collected from failed embankment sites in Louisiana and Texas. The fluctuations in moisture 
level and temperature in clayey soils when exposed to weathering cycles were studied as a part of 
this task using data collected from the embedded sensors. The fluctuating environmental 
conditions experienced by a highway embankment in field were simulated by accounting for 
several factors such as rainfall intensity and duration, evapotranspiration, temperature, and relative 
humidity. The obtained data which attribute to the changes in the behavior of compacted clayey 
soil were used to develop the design guidelines to select shear strength parameters for stability 
analysis after the soil has experienced seasonal variations involving wetting and drying cycles. 

Task 3 encompassed series of laboratory testing of strength and unsaturated soil properties of 
Louisiana and Texas soils. The impact of wetting and drying cycles on the changes in soil shear 
strength and unsaturated soil properties were investigated. The extent of decrease in soil strength 
and increase in hydraulic conductivity were determined to better understand the failure triggering 
criteria of the surficial slopes of embankments. This information was then incorporated in the 
numerical models of the highway embankment to study the effect of rainfall events on the stability 
of highway embankment slopes that incurred degradation of shear strength properties due to 
exposure to wetting and drying weathering cycles.  

Task 4 included numerical analyses of typical highway embankment slopes affected by weathering 
cycles. The hydro-mechanical properties obtained from laboratory testing of Louisiana and Texas 
soils in Task 3, before and after exposure to wetting and drying cycles, were used as input 
parameters for the development of the numerical model of the embankment. The changes in pore 
water pressure development when exposed to rainfall events of varying duration and intensity, and 
its impact on the stability of the surficial slopes based on the local meteorological data were 
assessed using SEEP/W and SLOPE/W modules of GeoStudio. 

Task 5 comprised developing a framework that can predict and identify the locations having a high 
risk of slope failure in Region 6 and assess the reliability of the proposed model with field 
verification from documented slope failures. The probability of failure of a highway embankment, 
which is a function of the (1) moisture intrusion in the soil as related to soil suction; (2) time-
dependent shear strength loss to FSS; and (3) slope inclination and soil properties were estimated 
to predict high-risk zones. Task 5 is currently in progress due to the accruing data from the physical 
model. It is anticipated that this task will be completed during the implementation period. 
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3. LITERATURE REVIEW 
Plastic clayey expansive soils are prevalent in many parts of Texas and Louisiana (24, 25). 
Pavements and slopes constructed using these soils which invariably included high plastic clayey 
soils that are susceptible to strength loss when exposed to weathering cycles (2, 3, 26–28). 
Repeated weathering related wetting and drying cycles might create deep desiccation cracking in 
the plastic clays that expose the soils to significant moisture infiltration from precipitation and 
related surface runoff conditions (17). Desiccation cracks of depths ranging between 1 and 6 ft 
may transpire on the slopes and in the unpaved shoulders, particularly those adjacent to travel lanes 
(26). An increase in the moisture content of the clayey soils due to rainfall events reduces the shear 
strength of these soils (29). In addition, the moisture movements will increase volume changes in 
these soils, causing extensive damage to the slopes and pavement infrastructure by inducing high 
roughness (30). These volume changes and reduced strength issues of subsoils have resulted in 
numerous pavement failures and highway slope failures (26, 27, 31, 32). Hence, it is of paramount 
importance to study the changes in the shear strength parameters and hydraulic properties of the 
geomaterials and assess the stability and serviceability of man-made slopes present in earthen 
embankment structures such as highway embankments, dams, and levees (17, 33–36). 

The slope stability analysis is often performed using peak shear strength parameters estimated by 
from direct shear or triaxial tests (37, 38). Day (26) performed a back analysis on a slope located 
in Oceanside, California, that incurred surficial failures in March 1992. The slope stability analysis 
was performed using the shear strength parameters obtained by extrapolating the triaxial test result, 
performed at stress conditions higher than that experienced by the shallow surficial soil layers. The 
analysis yielded a FOS of greater than one (FOS=1.33), suggesting that the slope should not have 
failed. It was inferred that the shear strength parameters, especially the effective cohesion intercept 
at low overburden pressure conditions, are usually overestimated when the effective cohesion is 
extrapolated based on the direct shear or triaxial tests performed at higher stress conditions (20, 
26–28). Furthermore, the cyclic wetting and drying cycles reduce the shear strength of the soil to 
the fully softened shear strength which is characterized by effective strength parameters that are 
significantly lower than the peak shear strength parameters (39, 40). The increase in destabilizing 
stresses due to exposure to moisture, coupled with a decrease in resisting shear strength leads to 
the instability of the surficial slopes (20). The extent of moisture intrusion and strength loss when 
exposed to wetting and drying cycles depend on the characteristics of the soil and changes in its 
hydro-mechanical properties (41, 42). 

The effects of wetting and drying cycles on the mechanical and hydraulic properties of clayey soils 
have been studied by several researchers. Benson (43) conducted a study to comprehend the impact 
of wetting and drying cycles on soil shrinkage strain and hydraulic properties. The results of the 
study suggest that soils with high clay fraction and high plasticity index are most prone to 
experience high shrinkage strains. Moreover, the presence of shrinkage cracks results in a 
significant increase in soil permeability when the soil is compacted wet of optimum moisture 
content. The permeability value was reported to increase by around 3 orders in magnitude after the 
first 3 wetting and drying cycles due to high shrinkage. Powrie and Smethurst (44, 45) indicate 
that vegetation can affect the wetting and drying cycles on clay slopes. Large trees with expansive 
roots systems induce higher evapotranspiration, causing desiccation cracks and higher 
permeability values. In contrast, smaller vegetation that consist of shallower roots can maintain 
the rainfall and evapotranspiration balance throughout the year and reduce the impact of wetting 
and drying cycles on the soil. Boynton and Daniel (15) studied the effect of confining stress on the 
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permeability of soil with desiccation cracks. It was found that the cracks in soil start closing with 
an increase in effective confining pressure after 30 kPa, which ultimately leads to a reduction in 
permeability. The desiccation cracks also affect the SWRC of soil (46). Benson et al. (46) 
investigated the change of unsaturated hydraulic properties of cover soils in ten fields in the USA 
that were exposed to climatic variation for four years. A significant change in air entry value and 
slope of SWRC of soil has been observed due to the formation of desiccation cracks. Ishimwe (47) 
performed tests on field-scale compacted clay liners and subjected them to wetting and drying 
cycles to calculate the field-obtained SWRC and the hydraulic conductivity functions and compare 
them with their correspondent laboratory values. The laboratory tests were performed from Shelby 
tube samples extracted after the drying cycle. It was noted that the hydraulic conductivity values 
from the laboratory samples were higher due to the desiccation cracks that formed during the 
drying cycle. 

The increase in soil permeability due to desiccation cracks causes rapid water infiltration into the 
soil which makes the soil swell and lose its strength. Skempton (48) performed back analyses of 
several failed embankment slopes incorporating the effect of fissure formation in clays and found 
that the shear strength of clay reduces to fully softened strength in this condition. The FSS was 
observed to be almost same as the peak strength of normally consolidated clays (39). Kayyal and 
Wright (13) conducted consolidated-undrained triaxial tests on both laboratory compacted samples 
subjected to wetting and drying cycles and normally consolidated slurry samples of Paris and 
Beaumont soils. This research showed the similarity between the failure envelopes of slurry 
samples and the laboratory compacted samples subjected to wetting and drying cycles. Wright et 
al. (49) conducted a similar study on high plasticity clay of Eagle Ford Shale. Results of this study 
indicated that the reduction in shear strength of a newly compacted specimen of Eagle Ford Shale, 
exposed to wetting and drying cycles, was not as significant as that incurred by normally 
consolidated specimen prepared from a slurry condition. However, in this research, it was realized 
that the void ratio of normally consolidated specimens was about 1.3 to 1.7 times more than that 
of the specimens subjected to wetting and drying cycles. Therefore, the authors hypothesized that 
the high difference in void ratio between the sample of normally consolidated from slurry and 
newly compacted samples subjected to wetting and drying cycle might be the reason for the 
observed behavior.
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4. METHODOLOGY 
The research study aims to assess the long term performance of highway embankments when 
exposed to wetting and drying weathering cycles and identify the slopes that are under high risk 
of failure in Region 6. Existing literature on the variation of soil hydro-mechanical properties with 
environmental conditions was reviewed to guide the physical model-scale experiments of the 
Texas and Louisiana soils. Two slope failure sites in Texas and Louisiana were identified and bulk 
soil samples were collected from the slope failure scarp.  

Two laboratory embankment models, one with Texas soil and other with Louisiana soil were 
compacted to build the physical model in the laboratory. The models were subjected to weathering 
cycles by accounting for the rainfall intensity and duration, evapotranspiration, temperature, 
relative humidity, and such other factors. The changes in soil strength and hydraulic conductivity 
properties, when exposed to weathering cycles, were evaluated based on results obtained from 
laboratory testing of hydro-mechanical properties of the collected soils. By using finite element 
method based software, SEEP/W and SLOPE/W modules of GeoStudio, the change in pore water 
pressure development and factor of safety of the embankment slopes were determined. The details 
of the procedures adopted to perform the physical model and laboratory tests are provided in the 
following sections.  

4.1. Laboratory Model-Scale Experiments 
The model-scale experiments are to evaluate the change in hydro-mechanical properties in a 
climate environment, which is contrast to the extreme of dry and wet cycles in prior research. The 
method used for physical modelling of highway embankments was to create containers with 
medium or high plasticity soils in them, compact the soil, and measure the soil properties over 
time while the specimens are in the outside environment. Each soil type will have two cylindrical 
containers that are 3 inches in diameter and 12 inches tall (Figure 1). The implementation of this 
task was divided into subtasks, where the housing containers for the soil samples were first 
constructed. This included weather-proofing and creating a drainage structure in the containers to 
ensure a water balance (i.e., flow in = flow out). More specifically, the water balance includes the 
terms of rainfall, infiltration into the soil, runoff from the surface, and water that percolates through 
the soil and is charged from the bottom drainage layer. Conserving the water volume will facilitate 
the numerical modeling. The containers were constructed on 3:1 slopes to better simulate real-
world slope angles found on embankments. The next subtask was obtaining soils from Louisiana 
and Texas slopes. This was completed and the soils are undergoing the process of drying and 
preparation for compaction. These experiments are considered to be long-term experiments 
because the change in hydraulic and strength parameters takes to time to occur. Thus, the 
implementation and data collection of these experiments are still ongoing. Initial results are 
provided in the  

 



6 

  
Figure 1. Construction of lab-scale specimen holder. 

4.2. Laboratory Experiments of Soil Hydro-Mechanical Properties 

4.2.1. Soil Shear Strength Test 
To conduct rainfall-induced slope stability analyses, the shear strength parameters of the soils need 
to be determined based on the embankment condition that is analyzed. Typically, a highway slope 
constructed by compacting the clayey soil, has appreciable shear strength, especially cohesion, 
which can maintain the stability of the slopes. However, these slopes are affected by the formation 
of desiccation cracks due to the effect of wetting and drying cycles on the surficial area of slopes. 
The subsequent reduction in shear strength has a detrimental impact on the stability of the slope, 
especially the surficial region. In this research, the peak shear strength parameters were determined 
by direct shear (DS) test to assess the shear strength properties of soil prior to experiencing 
softening behavior (Figure 2). DS tests were conducted as per ASTM D3080, and effective friction 
angle and cohesion value were estimated. A statically compacted cylindrical specimen of 63.5 mm 
(2.5 in) diameter and 25.4 mm (1 in) height was used for the DS testing. Tests were conducted 
under normal stresses of 50, 100, and 150 kPa (1044, 2089, and 3133 psf). The specimen was 
completely saturated and consolidated at the respective normal stress prior to shearing at a rate of 
4.4x10-3 mm/m (1.73x10-4 in/min). A slow rate of shearing was used to simulate a drained 
condition in the specimen and estimate the effective stress parameters. As part of a rehabilitation 
procedure, lime treated soil was considered in the top layer. Lime treatment leads to a decrease in 
soil swelling and shrinkage character and improves soil strength parameters. Therefore, the peak 
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shear strength of 8% lime treated soil samples was determined under the same set of normal 
stresses on unsaturated conditions after 7 days of curing period. 

   

 
Figure 2. DS test apparatus. 

The triaxial shear test is used to determine the drained peak shear strength parameters (Figure 3). 
In this test, a soil specimen is prepared using dry clay soil and adding water to reach its optimum 
moisture content, which was 19% based on the results of proctor test. The specimen is encased by 
a thin rubber membrane and placed inside a plastic cylindrical chamber that is filled with water. 
The next step is saturating the specimen by pumping water using a GeoJac hydraulic pump (pore 
pump). The next step is consolidation. In this step the specimen is subjected to an all-around 
confining pressures 12, 50, and 100 kPa by compression of the water in the chamber using another 
GeoJac hydraulic pump (cell pump). As confining pressure is applied, at first the pore water 
pressure of the specimen increases but after a few hours it starts to decrease until reaches zero. 
After this step the shearing step begins. To cause shear failure in the specimen, axial stress is 
applied using a GeoJac loading frame. Initial results are provided and subsequent experiments are 
ongoing with specimen weathering. 
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Figure 3. Triaxial test apparatus. 

To determine the shear strength of clay that was exposed to wet-dry cycles and experienced loss 
of strength, FSS test was conducted in accordance with ASTM (D7608-10) (Figure 4). The shear 
strength of soil was determined at normal stresses of 50, 100, and 150 kPa (1044, 2089, and 3133 
psf). The annular specimen with an inside diameter of 70 mm (2.75 in) and an outside diameter of 
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100 mm (4 in) was prepared by mixing soil with water to reach a moisture content 1.5 times of its 
liquid limit, and the slurry was placed in the annular mold of the modified Bromhead ring shear 
apparatus. The soil specimen was initially consolidated at a normal stress of 6.25 kPa with 
increment ratio of 1 to reach the respective target normal pressures. At the end of the consolidation 
process, the soil sample was sheared at a rate of 0.018 mm/min (7.05x10-4 in/min). 

 

 
Figure 4. Modified Bromhead ring shear test apparatus. 

4.2.2. Soil Hydraulic Conductivity Test 
The permeability test of soil was conducted in a flexible wall permeameter as per ASTM D5084-
03. The details of the permeameter and its features are provided in Bhaskar et al. (50). The 
permeability test was conducted to determine the saturated hydraulic conductivity value of a newly 
compacted clayey soil collected from Texas site. Cylindrical soil specimens of 38.1 mm (1.5 
inches) height and 71.12 mm (2.8 inches) diameter were prepared by statically compacting the soil 
at Optimum Moisture Content (OMC) and 95% of maximum dry density (MDD). The compacted 
specimen was placed on the base pedestal of permeameter as shown in Figure 5. The sample was 
saturated using backpressure from the base pedestal. After achieving a B value of 0.95, the 
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permeability test was carried out by applying a hydraulic gradient of 35 across the specimen. The 
rate of inflow and outflow was measured continuously, and the test was stopped when both the 
rates became equal. The coefficient of permeability was then calculated using Darcy’s law. 

 
Figure 5. Experimental setup for hydraulic conductivity test. 

4.2.3. Unsaturated Soil Properties Tests  
SWRC of a particular soil portrays the relationship between soil suction and moisture content. The 
SWRC was obtained for newly compacted specimens and specimens exposed to wetting and 
drying cycles. To determine the unsaturated soil properties, drying path of SWRC test was 
conducted using Tempe cell and WP4C Dew Point Potentiometer apparatus. Tempe cell apparatus 
was used for suction levels less than 500 kPa, whereas, WP4C Dew Point Potentiometer apparatus 
was used for suction values more than 500 kPa. Figure 6 shows the Tempe cell and WP4C Dew 
Potentiometer apparatus used in this research study. Before starting the Tempe cell test, the soil 
specimen was saturated by submerging in the distilled for approximately 72 hours. The weight of 
the specimen was checked frequently until there was no appreciable increase in weight. 

For all the soil specimens, the tests were started under a near-saturated condition. Different levels 
of air pressure were applied to the cell, and the water content of the specimens was calculated at 
every step by recording the amount of water coming out of the sample. The remaining portion of 
the SWRC corresponding to the relatively high suction range was determined using the WP4C 
apparatus. The total suction measured using WP4C Potentiometer was assumed to be equal to the 
soil matric suction due to the absence of appreciable quantity of dissolved salts. An approximate 
volume of 7 cm3 soil was placed in the chamber of the WP4C device. After sealing the chamber, 
the relative humidity above the soil was measured by the WP4C device to provide the suction 
value at a moisture content. After each step, the moisture content of the soil was varied, and the 
corresponding suction values were measured. The complete SWRC obtained using the Tempe Cell 
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and WP4C device was fitted with Van Genuchten best fitting curves (51). The soil matric suction 
value of soil directly affects the soil strength and unsaturated hydraulic conductivity values. 
Therefore, the obtained Van Genuchten unsaturated soil parameters were used as input parameters 
in the numerical analyses. 

  
(a) (b) 

Figure 6. SWRC test setup: (a) Tempe cell apparatus and (b) WP4C apparatus. 

4.2.4. Soil Shrinkage Tests  
Soils with higher shrinkage potential usually experience more infiltration of moisture during 
wetting periods, making it imperative to estimate the shrinkage strains of expansive soils. The 
increase in soil swelling and shrinkage strains eventually lead to a decrease in soil strength and an 
increase in soil permeability. This phenomenon finally results in instability of the slopes of a 
highway embankment, leading to surficial failures. The shrinkage properties of soils were 
determined to estimate the reduction in the volume of soil specimens due to loss of moisture in 
drought periods by conducting linear shrinkage and volumetric shrinkage test. The linear shrinkage 
test was conducted as per Tex-107-E which provides the one-dimension linear shrinkage strain by 
measuring both the length of the wet and dry soil bar. Dry soils were mixed with the required 
amount of water to attain a target consistency specified in Tex-107-E and molded as shown in 
Figure 7a. The molds were first kept at room temperature condition until a slight color change and 
then dried in an oven at 110°C (230°F). The lengths of dried specimens (Figure 7b) were measured 
by Vernier calipers, and the linear shrinkage was calculated as the percentage reduction in length 
with respect to the initial length of wet specimens.  
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  (a)  (b) 

Figure 7. Linear shrinkage test setup: (a) before drying and (b) after drying. 

Besides estimating the linear shrinkage strains, the volumetric three-dimension shrinkage 
properties of the soil were measured using digital imaging technology as per the procedure outlined 
in Puppala et al. (52).  Cylindrical soil specimens of 154.4 mm (6.08 inches) height and 71.12 mm 
(2.8 inches) diameter were prepared by statically compacting the soil at Optimum Moisture 
Content (OMC), wet of optimum moisture content, and dry side of optimum moisture content of 
corresponding to 95% of maximum dry density (MDD) as shown in Figure 8. 

 
Figure 8. Static compaction of volumetric shrinkage samples. 
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Subsequently samples were cured in the mold at room temperature for twelve hours, after which 
they were transferred to an oven set at a temperature of 158oF for twenty-four hours. After drying, 
the camera was placed 50 cm away from the edge of soil samples and a total of 6 pictures (two 
photographs of the top and base views of the soil sample and four photographs of the surface view 
with 90o angle apart) were taken immediately. The surface view pictures were cropped and then 
attached together into one image as presented in Figure 9a. This cropped and attached picture were 
analyzed with Imagej software. The number of pixels in the pictures were measured and the area 
of pixels were determined after oven drying. The area of pixel in cracked area of specimens were 
determined after using the software function of threshold (Figure 9b). The determined area of 
pixels was deducted from the total area of pixels to estimate the net uncracked area.  

The surface area ratio (Rs) was determined by diving the obtained net surface area by the initial 
unshrunk surface area of the sample soil. The circular cross-sectional area was measured in pixel 
by averaging from both top and bottom view photographs of the shrunk soil sample. The area ratio 
(Rc) in the analysis is obtained by taking the ratio of pixel area from the average cross-sectional 
area and the initial cross section area of the dummy cylinder. The perimeter ratio (Rp) in the 
analysis was obtained by taking the initial and shrunk diameters of the soil specimen were 
calculated from the circular area. Finally, the volumetric shrinkage (VS) determined using the 
following equation.  
 

VS= 1- (Rs×Rc
Rp

) x 100 [1] 

 
where: 
VS= Volumetric shrinkage (%); 
Rs = Surface area ratio; 
Rc = Cross-section area ratio; and 
Rp = Perimeter ratio. 

  
(a) (b) 

Figure 9. (a) Stitched pictures of trimmed 4 sides of specimen and (b) threshold of picture. 
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4.3. Numerical Modeling of Highway Embankments 
To demonstrate the effects of wetting and drying weathering cycles on the stability of highway 
embankments built with clayey soils, rainfall-induced slope stability issues were analyzed for 
Texas site slope by using SEEP/W and Slope/W modules of GeoStudio. Highway embankment 
slopes are mostly present in an unsaturated condition where the soil suction contributes towards 
the shear strength of the soil. However, infiltration of rainwater increases the water content and 
degree of saturation of the soils that were in an unsaturated condition prior to a rainfall event. The 
distribution of water content is affected by such rainfall events, consequently affecting the stability 
of the slope. In order to capture this phenomenon, a transient seepage analysis was conducted at 
first by using SEEP/W.  

The geometry of the embankment slope located at Texas site was obtained from the as-built 
drawing provided by local DOT (Figure 10). The original slope had a height of 10.6 m (34.8 ft) 
with a slope of 3:1 horizontal to vertical. The post-failure depth was observed to be approximately 
2.13 m (7ft), measured perpendicular to the slope (Figure 11). The plane strain model of the slope 
was built with soil layers having two different material properties (1) surficial layer that was 
exposed to wetting and drying cycles within 2.13 m (7ft) from the surface and (2) deeper layer that 
was not affected by weathering cycles (Figure 10). 

 
Figure 10. Texas site slope geometry. 



15 

 
Figure 11. Texas site observed height of slope failure. 

The initial conditions play a critical role in the transient seepage analysis results since soil strength 
and rate of infiltration depend on initial soil suction levels. In situ testing results suggested absence 
of water table above the 590 ft elevation. Therefore, the water table was assigned at an elevation 
of 590 ft in the numerical model of the embankment. The matric suction was estimated as the 
product of height above water table and unit weight of water. However, this approximation resulted 
in high suction level near the crest of slope (about 200 kPa). To prevent such high value of suction 
and its corresponding contribution towards shear strength, the initial suction level was limited to a 
maximum value of 50 kPa, which is similar to the approximation made by Lee et al. (53). The cut-
off value of matric suction (i.e., 50 kPa) was decided based on the water content of samples 
collected from the site and estimating the corresponding matric suction values from the SWRC. 

For Texas site, the exact date of slope failure and conditions that lead to the failure were not known 
to researchers at University of Texas at Arlington (UTA). To assess the effect of rainfall intensity 
and duration of rain on highway slope factor of safety (FOS), the precipitation frequency estimates 
provided by the National Oceanic and Atmospheric Administration Atlas 14 (54) were used. This 
compiled data is based on frequency analyses of partial duration series for selected duration of 1, 
4 and 10 days with an average recurrence interval of 10-year period. The induced precipitation 
duration, the total amount of rainfall and rainfall intensities are presented in Table 1.  

Table 1. 10 years return period of precipitation frequency estimates for Denison, TX (54). 
Rainfall 
Duration 

(Days) 

Total amount of rainfall 
(Inches) 

Rainfall intensities 
(Inches/s) 

1 6.21 7.19x10-5 
4 8.22 2.38x10-5 
10 10.10 1.17x10-5 
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After conducting transient seepage analyses, the slope model was transferred to SLOPE/W for 
estimation of the FOS of the slope. Slope stability analyses were performed considering the effect 
of unsaturated condition of the soil. Unsaturated friction angle of soil, φb, was assumed to be 15o, 
based on the recommendations from the existing literature (55). The slope stability analyses were 
conducted using the Morgenstern-Price method, and the critical slip surface was determined by 
defining the probable zones of entry and exit of the trial slip surfaces. 

The numerical analyses were performed for three different scenarios: (1) Case 1, representing 
slope stability analysis under short-term condition in which slope did not experience a significant 
number of weathering cycles, and (2) Case 2, portraying slope stability analysis under long-term 
condition where the surficial slope experienced desiccation cracking and degradation of hydro-
mechanical properties due to exposure to significant number of weathering cycles, and (3) Case 3, 
representing the slope stability after rehabilitation of slope using 8% lime within 2 feet depth from 
the surface layer of slope. Peak shear strength parameters of the soil estimated using DS test and 
saturated permeability values of newly compacted clay samples were assigned to all region of 
slope model for Case 1 analysis. In Case 2 analysis, the surficial soil layer was assigned with FSS 
parameters of soil determined using the modified Bromhead ring shear equipment in accordance 
with ASTM (D7608-10) and permeability value was increased by four orders (i.e., 104 times) as 
compared to that used in Case 1. In Case 3 analysis, in the lime treated layer and overlain untreated 
layer the peak shear strength parameters obtained during DS tests were assigned to the 
corresponding region of the slope model. 
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5. ANALYSIS AND FINDINGS 

5.1. Laboratory Weathering Experiments 
The laboratory model first required calibration of the moisture sensors. Six (6) METER TEROS 
10 soil moisture sensors that measure the volumetric water content (m3/m3) and temperature were 
implemented. Table 2 shows the calibration of the moisture sensors in air, sand and water. In air, 
the sensors read slightly negative values. In sand, the sensors measure from 0.3 to 0.4 while they 
measure approximately 0.6 in water. The calibrated sensors are inserted into the boxes for 
measuring soil moisture. 

Table 2. Calibration of METER sensors 

 

The soil sensors will be used to be understand the infiltration of rainfall into the soil. As data is 
accruing in the long-term experiments (Figure 12) changes in soil moisture with time based on the 
rainfall duration and intensity will facilitate the HYDRUS simulations, which give information on 
how the unsaturated soil properties change over time. Figure 12 shows the temporal change in 
volumetric moisture content with time. It is evident that sensor S1 near the surface saturates within 
72 hours whereas it takes 12 days for sensor S2 to saturate. Sensor S3 remained unsaturated when 
the water levels decreased and drying occurred. An axisymmetric HYDRUS model is currently 
constructed with no flow boundaries along the sidewalls and bottom floor. The top of the model is 
set to the weather data collected from the Louisiana State University (LSU) Ben Hur weather 
station. The soil layers are pea gravel overlying 35.5 cm of compacted clay overlaying a pea gravel 
layer for drainage. A geotextile separated the compacted clay from the pea gravel. At the bottom 
of the containers is a drainage outlet for water to flow out. The model predictions in soil moisture 
and volume leaving the system will be compared to the physical experiment. With the calibrated 
model, further sensitivity simulations can be performed to understand changes in the unsaturated 
properties with cyclic wetting and drying. 

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6
TEROS 10 Soil Moisture TEROS 10 Soil Moisture TEROS 10 Soil Moisture TEROS 10 Soil Moisture TEROS 10 Soil Moisture TEROS 10 Soil Moisture Measurement 

m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Material
-0.046 -0.051 -0.052 -0.055 -0.048 -0.061 Air
-0.044 -0.049 -0.055 -0.055 -0.049 -0.062 Air
0.113 0.110 0.107 0.104 0.119 0.096
0.622 0.669 0.593 0.587 0.635 0.562 Water
0.649 0.675 0.591 0.586 0.676 0.562 Water
0.631 0.675 0.589 0.585 0.670 0.562 Water
0.641 0.676 0.589 0.584 0.691 0.563 Water
0.666 0.592 0.589 0.585 0.689 0.563 Water
0.546 0.410 0.395 0.573 0.621 0.564
0.320 0.310 0.633 0.527 0.550 0.568 1,2 Sand 3,4,5,6 Water
0.320 0.310 0.634 0.526 0.527 0.568 1,2 Sand 3,4,5,6 Water
0.440 0.427 0.395 0.370 0.575 0.575 3,4 Sand 1,2,5,6 Water
0.560 0.559 0.301 0.300 0.555 0.573 3,4 Sand 1,2,5,6 Water
0.561 0.537 0.301 0.300 0.555 0.574 3,4 Sand 1,2,5,6 Water
0.579 0.535 0.450 0.433 0.379 0.387 5,6 Sand 1,2,3,4 Water
0.592 0.545 0.659 0.570 0.304 0.307 5,6 Sand 1,2,3,4 Water
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Figure 12. Time history of volumetric moisture sensors in environmental climate in Baton Rouge, LA. 

5.2. Soil Hydro-Mechanical Properties  

5.2.1. Soil Shear Strength Properties  
Table 3 presents the peak and fully softened strength soil parameters of Texas site. The results 
suggest that a newly compacted specimen of clayey soil has sufficient cohesion value (13.2 kPa) 
whereas, in fully softened condition, clayey soil significantly lost its cohesion (reduced to 1.28 
kPa). However, the friction angle value was not significantly affected in the fully softened state. 
Rehabilitation of clayey soil by using 8% lime increased the soil strength parameters significantly. 
Lime treatment increased soil cohesion value from 13.20 kPa to 173.32 kPa while the friction 
angle value increased from 23.4° to 43.1°. The estimated data were used as input parameters into 
the respective regions for the slope stability analysis. 

Table 3. Shear strength parameters of Texas site. 

 

 

 

 
Figure 13 shows the consolidated drained triaxial compression test conducted with a cell pressure 
of 3,550 psf (170 kPa). The sample size was 3 inches in diameter and 6 inches in height. The 
reported deviator stress was 22.2 psi (3195 psf, 153 kPa). As multiple specimens are tested, the 
change from peak shear strength to fully softened will be determined using a regression analysis. 

Slope 
region 

Strength 
Type 

c' 
(kPa) 

φ' 
(degree) 

Surficial layer Peak shear 13.20 23.4 
Deep layer Fully softened 1.28 23.7 

Lime treated layer Peak shear 173.32 43.1 
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Figure 13. Consolidated drained triaxial test of compacted clay from Texas at normal stress of 170 kPa. 

5.2.2. Soil Permeability 
The hydraulic conductivity was estimated to be 2.68x10-10 m/s (8.8x10-10 ft/s) for a newly 
compacted specimen. Several researchers have reported that the hydraulic conductivity values of 
clayey soils increase by 2 to 4 orders of magnitude (i.e., increase in 102 to 104 times) due to 
exposure to wetting and drying cycles (14, 56). Therefore, the slope stability analysis for Case 2 
was performed for Texas site soil with an increased hydraulic conductivity value of 2.68x10-6 m/s 
(8.8x10-6 ft/s). 

5.2.3. Unsaturated Soil Properties 
The SWRC parameters directly affect the soil moisture distribution changes during rainfall events 
(54). Therefore, ignoring the changes in SWRC parameters may lead to errors in transient seepage 
analyses results. The SWRC data and the Van Genuchten best fitting parameters for Texas soil, 
before and after exposure to wetting-drying cycles are presented in Figures 14a and 14b, 
respectively. A drastic change in unsaturated soil properties due to exposure to wet and dry cycles 
was observed. Figure 14b shows that exposure to wetting-drying cycles shifted the SWRC of Texas 
site soil to the left, resulting in a decrease in the air entry value from 65 kPa (9.43 psi) to 24 kPa 
(3.48 psi). Furthermore, the Van Genuchten best fitting parameter α increased 2.1 times from 0.01 
kPa-1 to 0.021 kPa-1, and the n parameter decreased from 2.89 to 1.35. The increase in α value 
shifted the SWRC towards the left, resulting in a lower matric suction at a given volumetric water 
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content. Therefore, it can be concluded that surficial soils exposed to wetting-drying cycles will 
have a lower contribution of suction-induced shear strength towards the overall shear strength of 
the soil. The obtained SWRC parameters were used as input parameters in the numerical models 
to better simulate the long-term performance of slopes exposed to weathering cycles under rainfall 
condition.  

 
(a) 

 
(b) 

Figure 14. (a) SWRC of Texas site as compacted condition and (b) SWRC of Texas site after wet-dry cycles. 
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5.2.4. Soil Shrinkage Properties  
The linear and volumetric shrinkage strain values of Texas site soil was estimated, and the 
volumetric shrinkage results are presented in Table 4. Texas soil experienced 17.2% linear 
shrinkage whereas volumetric shrinkage results are varying between 17.1 to 22.8% with respect to 
compacted water content. The results show that the soils collected from Texas site experienced 
significant amounts of shrinkage with both two different tests, a typical property of expansive 
soils. A higher volumetric shrinkage causes more moisture infiltration during the wetting period 
after the drought, and it indicates a higher chance of getting drastically affected by shrinking and 
swelling phenomenon. This may subsequently contribute to the loss of cohesion, an increase in 
hydraulic conductivity values and eventually lead to failure of surficial slopes of the highway 
embankment. 

Table 4. Volumetric shrinkage properties of Texas site soil. 

 

 

 

5.3. Numerical Analyses Results 
Transient seepage and unsaturated slope stability analyses were conducted on Texas site slope by 
using SEEP/W and SLOPE/W. The respective hydro-mechanical material properties obtained 
from laboratory testing were used as input parameters to model the behavior of the embankment 
slope under the two different scenarios. A total of 12 transient seepage and slope stability analyses 
were conducted to demonstrate the effects of rainfall event on the stability of highway 
embankments. The FOS of the slopes were calculated for post-construction condition (Case 1), 
and long-term condition (Case 2) incorporating the effect of desiccation cracks formed along the 
slope surface layer when exposed to wetting and drying cycles, and (Case 3) considering a lime 
treated top layer (8% lime). 

In Case 1, the newly compacted highway slope had a high FOS value about 2.83, for all the three 
rainfall events. This can be attributed to the low value of permeability which prevented the 
percolation of rainwater and presence of high soil shear strength parameter, particularly cohesion. 
Figure 15a represents the pore water pressure distribution at the middle of the slope after 1 day of 
rainfall event between the elevations 641 ft to 626 ft. For all the cases, no moisture fluctuation was 
observed below elevation of 626 ft due to rainfall. The matric suction value decreased from 
elevation 641 ft to elevation 634.5 ft (6.5 ft) due to an increase in moisture content during rainfall 
events. Figure 15b shows the minimum FOS of slope (2.83) and the location of the critical slip 
surface at the end of the rainfall event. The effects of higher air entry value and lower unsaturated 
hydraulic conductivity value of newly compacted clayey soil prevents the development of deep 
wetting fronts, leading to a higher FOS of the slope. 

Compacted water content (%) Volumetric Shrinkage 
(%) 

17.5 (dry of OMC) 17.1 
   19.5 (OMC) 19.0 

21.5 (wet of OMC) 22.8 
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(a) 

 
(b) 

Figure 15. (a) The pore water pressure distribution at the middle of the slope after 1 day of rainfall event and (b) calculated 
minimum slope FOS. 

Figure 16a presents the pore water pressure distribution at the middle of the slope after 1 day of 
rainfall event for Case 2 and Figure 16b indicates the calculated minimum FOS of slip surface and 
its location at the end of the rainfall event. The soil moisture fluctuation can be observed from 
elevation of 641 ft to 629.2 ft. A drastic change in soil hydraulic properties eventually led to 
decrease in FOS of slope from 2.839 to 1.864. Unlike Case 1 analysis which exhibited a deep slip 
surface, the critical slip surface in the Case 2 analysis was surficial in nature, passing through the 
surficial soil layer which was affected by the wetting and drying cycles. 
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(a) 

 
(b) 

Figure 16. (a) The pore water pressure distribution at the middle of the slope after 1 day of rainfall event (Case 2) and (b) 
calculated minimum slope FOS. 

The FOS of slope for Case 2 dropped below one during an analysis performed with 10 days of 
rainfall infiltration. Figure 17a represents the pore water pressure distribution at the middle of the 
slope after 10 days of rainfall event for Case 2, and Figure 17b shows the calculated minimum 
FOS of slip surface along with its location. The positive pore water pressure in the surficial layer 
between elevations of 641 ft to 633.13 ft reduced the effective soil shear strength, resulting in 
instability of the slope (FOS <1). The presence of an underlying layer of low permeability, coupled 
with a rainfall event with higher intensity and duration, caused the infiltrated water to accumulate 
and form a saturated zone in the surficial layer. This observed perched water zone from the 
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numerical analysis (Figure 17b) was consentient with the site visit observations. Figure 18 shows 
the perched water table observed at a depth of 2 ft below the surface during the site visit.  

 
(a) 

 
(b) 

Figure 17. (a) The pore water pressure distribution at the middle of the slope after 10 days of rainfall event (Case 2) and 
(b) calculated minimum slope FOS. 
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Figure 18. Observed perched water table during the Texas site visit. 

Figure 19a illustrates the pore water pressure distribution at the middle of the slope after 10 days 
of rainfall event for case 3 and Figure 19b represents the calculated minimum FOS of slip surface 
and its location at the end of the rainfall event. The soil moisture fluctuation can be observed only 
in the surficial region between elevations of 641 ft to 634.37 ft and there is not any development 
of positive pore water pressure. Even after 10 days of rainfall event, significant improvement in 
soil strength parameters due to rehabilitation of clayey soil using 8% lime and minor changes in 
soil pore water pressure diagram leads to increase in the calculated minimum FOS (3.147). 

Table 5 presents the FOS values of the slope for the three analysis cases and different rainfall 
conditions. It can be concluded that the detrimental effects of wet-dry cycles on clayey soil can 
cause surficial slope instability problems under higher intensity and prolonged duration of 
rainfalls. However, rehabilitation of the clayey soil with lime improves soil strength parameters 
and results in sufficient FOS values of the slope for all the analysis. 

Table 5. Calculated FOS values after different rainfall amount for Texas site slope. 

 
 
 
 

 

 

 

 

Case # 6.21 inches 8.22 inches 10.10 inches 
Case 1 2.839 2.838 2.838 
Case 2 1.864 1.304 0.861 
Case 3 3.185 3.167 3.147 
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(a) 

 
(b) 

Figure 19. (a) The pore water pressure distribution at the middle of the slope after 10 days of rainfall event (Case 3) and 
(b) calculated minimum slope FOS for lime treated slope. 
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 6. CONCLUSIONS 
The literature review and results of the research substantiate that the shear strength of Texas and 
Louisiana soils starts at peak strength and undergo significant strength loss when exposed to wet-
dry weathering cycles over time to attain the Fully Softened Strength (FSS). Moreover, the 
saturated hydraulic conductivity increases by 2 to 4 orders of magnitude (i.e., 102 to 104 times) due 
to the wetting and drying cycles. The reduction in soil strength from peak to FSS and an increase 
in hydraulic conductivity values provide valuable insight into the development of failure 
conditions in the embankment with time. For example, the results suggest that a newly compacted 
specimen of clayey soil has sufficient cohesion value (13.2 kPa) whereas, in fully softened 
condition, clayey soil significantly lost its cohesion (reduced to 1.28 kPa). The friction angle value 
did not vary from peak to fully softened state, which corresponds to work conducted by Stark and 
Eid (42). The results also show that the soils collected from Texas site experienced significant 
amounts of shrinkage, a typical property of expansive soils. A higher volumetric shrinkage causes 
more moisture infiltration during the wetting period after the drought, and it indicates a higher 
chance of getting drastically affected by shrinking and swelling phenomenon. This may 
subsequently contribute to the loss of cohesion, an increase in hydraulic conductivity values and 
eventually lead to failure of surficial slopes of the highway embankment. The numerical 
simulations show that the factor safety is still high for rainfall totals less than 6 inches. However, 
as the rainfall increases to over 10 inches, the factor of safety approaches unity (1.0), which 
indicates imminent failure. The long-term experiments are in their final stage of preparation and 
will be conducted over a long time period to fundamentally understand when compacted soil 
properties change with time.  
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